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The coexistence of cooperation and selfish instincts is a remark-
able characteristic of humans. Psychological research has unveiled
the cognitive mechanisms behind self-deception. Two important
findings are that a higher ambiguity about others’ social pref-
erences leads to a higher likelihood of acting selfishly and that
agents acting selfishly will increase their belief that others are
also selfish. In this work, we posit a mathematical model of
these mechanisms and explain their impact on the undermin-
ing of a global cooperative society. We simulate the behavior of
agents playing a prisoner’s dilemma game in a random network
of contacts. We endow each agent with these two self-deception
mechanisms which bias her toward thinking that the other agent
will defect. We study behavior when a fraction of agents with the
“always defect” strategy is introduced in the network. Depending
on the magnitude of the biases the players could start a cascade of
defection or isolate the defectors. We find that there are thresh-
olds above which the system approaches a state of complete
distrust.

behavioral economics | cognitive neuroscience | corruption |
cooperation | self-deception

Individuals often deviate from the behavior that maximizes
their material reward (1, 2). For example, in the ultimatum

game, people prefer to reject profitable offers that they consider
unfair (3). This behavior, and other phenomena such as fairness
or cooperation (2, 4), can be accounted for within a rational
model that includes broader objectives or “social preferences”
(altruism, fairness concerns, etc.) as part of the function which
agents seek to optimize.

Naturally, agents seek to reduce the problems that arise when
material rewards collide with social preferences. For example,
believing that others are altruistic may make it more difficult for
an agent to act selfishly which, in turn, may reduce its monetary
payoff. A way of solving this tension is to develop a self-serving
bias: that is, to believe that others are not altruistic to “justify”
a selfish act. Cognitive dissonance theory (5, 6) aims to explain
the emergence of belief with self-serving biases. The idea is
that dissonance (contradiction) between cognitions is psychologi-
cally uncomfortable, and so it triggers mechanisms of dissonance
reduction—and one way of doing so is by altering beliefs (7, 8).

Self-deception mechanisms have been broadly studied in eco-
nomics (2, 9). Recently, using an experimental design called
“The Corruption Game,” we demonstrated two of these prin-
ciples (10):

Principle 1 (P1) Selfish action alters beliefs about others’ social-
preferences.

P2 Ambiguity regarding others’ social preferences
increases the likelihood of acting selfishly.

We use the term Projection to refer to P1, which is a trait that
describes how people blame others for their actions. The notion

of Projection by which our actions affect how we think of oth-
ers (11, 12) is at the same time intuitive and paradoxical. From
a rational perspective, beliefs about others should be based on
what they have done, not on what we have done to them. How-
ever, it has been observed that subjects in economic games not
only take into account the previous actions of other players, but
also their past actions (13, 14). Additionally, people’s beliefs also
depend on their own previous actions (10).

Here, we use the colloquial term Paranoia to refer to P2 (the
idea that if there is ambiguity about how another person may
act, an agent will sample the distribution biased for the worse
outcomes). Closely related to P2 is the mechanism of “catego-
rization” and “malleability” (15). For example, stealing a pen is
more malleable than stealing the money needed to buy the pen.
Similarly, the distribution of beliefs on the moral judgment of the
malleable case (stealing the pen) is ambiguous, and hence people
may use this ambiguity in their favor to act more selfishly.

The aim of this work is twofold: first, to provide a mathe-
matical description of these self-deception mechanisms (Para-
noia and Projection); and second, based on this mathematical
description, to investigate the impact that they may have on the
evolution of trust among the agents of a society.

The Model
We study a set of 105 interacting agents that play a modified Pris-
oner’s Dilemma (SI Appendix, section 1.1) game against each
other in a static random network. The main difference from
other similar approaches investigating networks and evolution of
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cooperation (or corruption or reputation) (16–19) is that here,
we used a Bayesian updating rule and inference process (similar
to ref. 20). This rule was necessary to generate a mathematical
model of cognitive biases Paranoia and Projection and study their
impact on the propagation of strategies.

For clarity, we divide the strategy of the agents into three
stages (Fig. 1): observation, inference, and decision. Observa-
tion is the process of accumulation of information about other
agent’s actions. The inference process uses observed informa-
tion and combines it with priors to generate—using a Bayesian
model—a belief about other agents’ behavior. This stage is mod-
eled as a beta-binomial process (SI Appendix, section 1.3). The
output of the inference process is the expected reward for each
possible action. Finally, in the decision stage, the agent chooses
the option that maximizes her expected reward.

Under these settings, the agents in the network will end up
defecting or cooperating with each other depending on the initial
conditions. Our primary goal is to investigate how incorporat-
ing the cognitive biases described in the introduction (Paranoia
and Projection) affect the evolution of cooperation or defection
in the network. In the next subsection, we explain how these
cognitive biases can be incorporated into a Bayesian inference
process.

The essential step in the inferential process in our model is
the estimation of an agent’s probability of defection, θ, in a
given interaction—or equivalently, the probability of coopera-
tion pc =1− θ. If the estimation of θ is small enough, the agent
will trust the other player and will cooperate; if not, the agent
will choose to defect. An agent estimates θ based on her previous
observations of the other agent.

In the beta-binomial model, the Beta distribution (SI
Appendix, section 1.2) is used to describe the prior belief distri-
bution of this variable. Agents use the mean value of their belief
as an estimation of this parameter:

Fig. 1. Sketch of the decision-making process of each agent. The observing
stage is fed with the actions of other agents, but also from the decisions of
the own agent as a result of the Projection bias. The observed evidence (the
number of defection and cooperation actions of the other agents) is used
in the inferential process to estimate the expected reward of each possible
action. This expected reward could be biased by Paranoia. Finally, based on
the expected reward of each action, in the decision stage, the agent chooses
among her options.

θ̂=

∫ 1

0

θBetaθ(a, b) dθ,

where a and b are, respectively, the numbers of observed defec-
tions and cooperations. As a increases, respect to b, θ̂ approaches
1, indicating that the agent believes that the other agent is likely
to choose to defect. In this model, each agent has a specific belief
distribution for each other agent she interacts with.

Paranoia and Projection have a different effect on the infer-
ence process. Broadly, Projection changes the beta distribution
(as if own actions were fragments of observed actions), and
Paranoia results in sampling unevenly (focusing on the worse
outcomes) of the beta distribution.

Projection is a trait that describes how people blame oth-
ers for their actions. Although an ideal observer constructs this
distribution only from priors and observations, to model this
characteristic, each time an agent defects, she modifies her beta
distribution of beliefs. With Projection the actions of the agent
impact on the resulting Beta distribution, which she then uses to
estimate the probability of defection or cooperation.

Specifically, this is done by changing, whenever the agent
defects, the a parameter (which measures the number of
observed defections) of the Beta distribution. How much a is
changed each time the agent defects is scaled by the parame-
ter Projection in such a way that if Projection=1 defecting on
another agent has the same impact on the Beta distribution
than if the other agent defects. If Projection=0.1, 10 defec-
tions of an agent would have the same effect on its estimated
Beta distribution than a defection by the other player, and
so on. This same mechanism could be used when the agent
cooperates—namely, when an agent cooperates, it changes its
belief about others to think that it is more likely that others
cooperate too. In this case, the value of Projection determines
the variation on the b parameter of the Beta distribution after a
cooperation.

We explore two different variations of the Projection bias.
First, when the Projection affects only the a parameter if the
agent defects. We call this asymmetric Projection. Second, when
the Projection affects both, the a and the b, parameters after the
agent defects or cooperates, correspondingly. We call this the
symmetric Projection.

In both cases, the Projection bias changes the Beta parame-
ters that describe the belief about all other agents, not only the
one involved in the specific interaction. For example, if agent A
defects in a given interaction with B, due to the effect of Projec-
tion, A will believe that B is more likely to defect. Similarly, A
will believe that all other agents are more likely to defect. His
own defection has changed his beliefs regarding how all of the
other agents he will interact with will behave.

It is important to highlight that, even though this bias yields a
wrong value for θ̂, that does not imply that this kind of computa-
tion is not optimal. In fact, in models where fairness and others’
social preferences are incorporated into a more general utility
function, beliefs and action correlate in the same way as in our
model (10). That is, the selfish acts are associated with the belief
that others are selfish too. The main difference with our model is
that, as has been shown experimentally, there is not only corre-
lation but causation. Surprisingly, this causation is in both ways:
Belief alters actions, and actions alter belief. Our model explic-
itly describes this two-way causation using a Bayesian estimation
(from beliefs to actions) and by the Projection bias (from action
to beliefs).

In ref. 10, we showed that the effect of a defecting action pro-
duces an average variation of 0.2 in the belief. From this, we can
have an estimate of the experimental value of Projection of 0.54
(see SI Appendix, section 1.4 for details). This result serves as
an order of magnitude of realistic values of Projection when we
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inquire about the impact of this parameter on the propagation of
cooperation and defection.

The other bias that we explore, Paranoia , acts on how θ̂ is esti-
mated from a distribution. If Paranoia=0, the estimation of θ is
the mean value of the variable, as it would be in an optimal infer-
ence process. When Paranoia assumes a nonzero value (here, we
only investigate positive values), the estimation is given by this
implicit equation.

∫ θ̂m

θ̂

Betaθ(a, b) dθ=Paranoia. [1]

This equation means that the agent shifts its estimate from θ̂

to θ̂m . The value of Paranoia measures the total area under
the probability distribution between the optimal and biased esti-
mates θ̂ and θ̂m . This equation also implies that the impact
of Paranoia on the estimation of θ̂m depends on the shape of
the probability distribution. If there is substantial evidence of
something, that will be reflected in a narrow and peaked dis-
tribution shape, and the effect of Paranoia on θ̂m will be weak.
Instead, if the distribution is wide, meaning that there is insuf-
ficient evidence, this same amount of probability will cause a
higher distortion in the estimated belief. This mechanism, then,
reproduces the empirical fact that higher ambiguity increases the
likelihood of being selfish (P2). Note also that Paranoia is mea-
sured in units of the probability distribution (and hence has one
as absolute maximum).

This bias is closely related to the models of reciprocal altru-
ism (10, 21) where belief may be altered too. In these models,
changing the belief has a cost that increases as the differ-
ence between the unbiased and the biased belief increases.
The Paranoia bias could be thought of as step function where
there is no cost in changing a belief up to some point where
the cost, suddenly, approaches infinity. The explicit descrip-
tion of the belief as the mean of a distribution allows us to
model P2.

Results
We study how the network evolves when it is contaminated with a
fraction of agents with the strategy ALLD (always defect). These
agents do not learn or change their behavior in any way; they
stubbornly defect independently of the history of actions.

All simulations begin with a network in which agents trust
each other. That is, they believe that the expected reward of
cooperating is higher than the expected reward for defecting
(Fig. 5). Then, we replace a fraction of the regular agents of the
network by ALLD agents. These replacements are distributed
at random in the sites of the network. Specifically, the ques-
tion we ask here is how the network parameters convey more
resistance or vulnerability to this “infection” process. To do
so, we let the network evolve under the influence of ALLD
agents and study whether the defection policy extends over
the network.

Cascades. First, we study how the system evolves when one
ALLD agent is introduced in the network. Under this condi-
tion, we measure the fraction of agents that are defecting to
each other, which is called the active fraction, Sa . Fig. 2 shows
how the Sa changes as Projection changes when we use the
asymmetric version of the bias. There is a transition in the
value Projection=1.5 (dashed line in Fig. 2). At this point, one
ALLD agent is capable of changing the behavior of a finite
fraction of all the other agents that start cooperating and end
up defecting with each other. Or, in cascades jargon, it pro-
duces a “global cascade” of defection. If the symmetric version
of the bias is used, the value of Projection changes the vul-

Fig. 2. The active fraction changes as the Projection bias increases when
only one ALLD agent is present in the network. The point marked with a
dashed line is the theoretical value at which the biggest cluster of vulnerable
nodes percolates the network. As predicted, this value also indicates the
transition from zero to positive values of Sa.

nerability of the agents only if the value of the Paranoia is
greater than zero. Then, a similar behavior is observed (SI
Appendix, section 1.7).

In the case of the asymmetric bias, this value, Projection=1.5,
can be derived analytically following the method of Watts (22),
and the result is in agreement with the numerical simulation (SI
Appendix, section 1.6).

Percolation and Phase Transitions. Now, we generalize this analysis
to a broader situation, where not only one agent, but a frac-
tion, f, of ALLD agents are present in the network. We examine
the robustness of the system by analyzing its evolution as two
parameters are changed: the fraction, f , and the value of the Pro-
jection parameter. We calculate the robustness of the network
measuring Sa . Here, because there is more than one ALLD,
we also incorporate a more refined measure of phase transition
referred to as the size of the giant active component, Sgc . Sgc

measures the size of the largest cluster of agents that are defect-
ing to each other. If there is only one agent, Sa and Sgc are
equivalent.

Fig 3 shows Sgc in the (Projection, f ) map for the asymmetric
version of the bias. It can be seen that the value of Sgc increases
as the value of f or Projection increases. To better understand
the transitions in this map, Fig. 4 shows the Sgc as a function of f
for three values of Projection for the asymmetric bias.

When Projection=0, the ALLD agents do not change the
behavior of the regular agents of the network toward other
agents. Then, the change in Sgc is due only to the fact that
more ALLD agents are defecting in the network. Marked with
an arrow in Fig. 4, for this case, a continuous transition can be
seen at f = fc1. If f < fc1, the value of Sgc is zero and if f > fc1
the value of Sgc take positive values. In this situation, the pro-
cess can be mapped into a standard percolation (SI Appendix,
section 1.8). The analytical result yields the value fc1 =0.05,
which is in agreement with the numerical simulations, as can be
seen in Fig. 4.

If the value of Projection is greater than zero, the actions of
the ALLD agents change the belief of the regular agents in the
network. In Fig. 4, it can be seen that when Projection increases,
the value of Sgc increases and the value of the critical point fc1
moves toward zero.

Interestingly, if the value of Projection≥ 0.8, another kind of
transition appears in the system. This second transition at f = fc2
is not continuous.

If the symmetric version of the Projection bias is used, the
results remain equivalent only if the Paranoia bias is set to a
value higher than 0 (SI Appendix, section 1.7). Next, we study
more generally for all models, how Projection and Paranoia can
interact to affect the robustness of the network.

8730 | www.pnas.org/cgi/doi/10.1073/pnas.1803438115 Babino et al.
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Fig. 3. Heat map of size of the giant component when Projection and f
vary. The heat map shows two different regions: When Projection< 0.8, the
value of Sgc increases continuously with f ; if Projection≥ 0.8, the value of
Sgc changes discontinuously at a critical value fc2 of f .

Projection and Paranoia Interaction. The Paranoia bias not only
affects the dynamics, but the initial condition of the network
as well. An agent may believe that others are likely to defect
because her internal distribution (based only on the observation
of the actions of other agents) has shifted toward defection or
because her Paranoia bias parameter is greater than zero and her
estimation θ̂m is higher than what the evidence shows her. Our
analytic approach is to investigate the dynamics of a set of net-
works in which Paranoia and the mean of the Beta are covaried,
maintaining the same initial θ̂m , and, hence, we combine pri-
ors and Paranoia parameters in such a way that they yield the
same value of θ̂m , as shown in Fig. 5. In this way, we can be sure
that any difference observed among the simulations is due to a
change in the dynamics of the system and not to a change in the
initial estimation θ̂m . Since the parameters of the Beta distri-
bution are integers, this approach imposes a constraint on the
values that the Paranoia bias can take to keep the initial estima-
tion θ̂m unchanged. That is why we investigate only four values
of Paranoia and not a more fine-grained set of values as we do
with the Projection bias and the fraction of ALLD agents. But,
we also explore the results using different initial values of θ̂m and
different values of agents’ memory in SI Appendix, sections 1.9
and 1.10.

The four values of Paranoia depicted in Fig. 5 in combination
with four values of Projection yield a matrix of 16 sets of param-
eters. As depicted in Fig. 6A, for the symmetric version of the
Projection bias, the evolution of all networks could be grouped
into three classes. For some parameters, marked in blue in Fig.
6B, the networks were highly cooperative, showing a smooth pro-
gression of Sa as a function of f . Interestingly, this is not the case
for Sgc , which shows a sharp, but continuous, transition at f = fc1,
as can be seen in Fig. 6C. This is evidence of a hidden phase tran-
sition, which is not visible in the overall activation, Sa . A second
class, colored green in Fig. 6, revealed a discontinuous transi-
tion in both, Sa and Sgc . For f < fc2, the network remains mostly
cooperative and transitions abruptly to defection for f > fc2. For
other parameters, instead, the network ends in a high defection
state. Introducing a single ALLD agent is enough to shift the net-
work toward total defection (red regions in Fig. 6A). We refer
to these three classes as (i) high cooperation, (ii) bistable, and
(iii) high defection, respectively. These classes are also present
when the initial value of θ̂m is below the threshold cooperation
(SI Appendix, section 1.9), and then these results are robust and
do not depend on this specific initial value. As in the previous
simulations, a similar map with the same type of states and tran-
sitions is found if we use the symmetric version of the Projection
bias (SI Appendix, section 1.7).

A specific analysis of which priors yield to different regimes
of stability (Fig. 6A, first row) indicates that when the Projection

parameter is set to 0, regardless of the value of paranoia, the
networks belong to the high-cooperation class. This means that
the society is robust under the inception of a fraction of ALLD
agents. For moderate values of Projection (0.25) which are lower
than the estimated experimentally from ref. 10, the network is in
high cooperation for low values of Paranoia and shifts to bista-
bility for values of Paranoia of 0.36. For this level of Projection,
even for maximum values of Paranoia (this is very close to the
strict maximum since greater values of Paranoia are incompati-
ble with a network that begins in full cooperation), the network
never is in the high-defection class. For higher values of Pro-
jection (0.75), which are slightly above experimental estimates,
the network displays the three different behaviors, depending
on the value of Paranoia. If it is zero, then the network is in
high cooperation, and, as the value of Paranoia increases, the
network behaves as a bistable system and, finally, is in a high
defection state.

Discussion
By using a Bayesian updating rule in an agent-based simulation,
we were able to model how two specific cognitive biases, Projec-
tion and Paranoia, impact the decision-making process. Then, we
use this to inquire how these parameters affect the propagation
of defection started by a set of ALLD agents.

Our first result is that if only one ALLD agent is introduced in
the network, there is a threshold in the value of Projection up to
which the agents keep cooperating with each other. If the value
of Projection is higher than the threshold, then a positive fraction
of the agents start to defect. In the case of the asymmetric ver-
sion of the Projection bias, the threshold could be deduced ana-
lytically and coincides with the value found in our simulations.

Then, we find two kinds of transitions when a fraction of
ALLD agents is introduced. If the value of Projection is low
enough, there is only one transition at fc1 where the size of the
giant component of defecting agents goes from being zero to
being greater than zero, a continuous transition. If the value of
Projection is >0.8, we find another transition at fc2, where the
fraction of agents that are defecting to each other jumps in a
noncontinuous manner. These two types of transitions resem-
ble the transitions present in the bootstrap percolation process
(23). Even though there are differences between the two pro-
cesses, the appearance of the same two kinds of transitions
suggests that there is a connection between them. These same
kinds of transitions have been observed in the spread of extreme
opinions (24). In ref. 24, Ramos et al. used a k-core model
to explain their results which are closely related to bootstrap
percolation (23).

Additionally, we study how the effect of Paranoia and Pro-
jection interact in the spreading of the defections produced by
fraction ALLD agents. The main result is that, if the Projection
bias is set to zero, the Paranoia bias does not make the network

Fig. 4. Examples of f vs. Sgc for three values of Projection. The arrows show
the point fc1 at which Sgc changes from zero to positive values and the
dashed line indicates the discontinuous transition at fc2.
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Fig. 5. Belief distribution for four parameter sets of Paranoia, a and b. In A,
we plot a Betaθ(4, 8) with Paranoia = 0; in B, a Betaθ(3, 9) with Paranoia =

0.22; in C, a Betaθ(2, 10) with Paranoia = 0.36; and in D, a Betaθ(1, 11) with
Paranoia = 0.37. The green line shows the mean value of the probability
of defection, θ̂, while the red line shows the manipulated mean value θ̂m.
The area under the distribution between θ̂ and θ̂m is, by definition, the
value of the Paranoia parameter (Eq. 1). The mean of the distribution (or,
equivalently, the values of a and b) and the Paranoia parameters have been
chosen in such a way that they compensate each other and lead to the same
manipulated mean θ̂m. The blue vertical line shows the limit above which
the agent believes that the maximum reward is achieved by defecting and
below which the agent believes that the maximum reward is obtained by
cooperating. If θ̂m is higher than this value, then the agent decides to defect;
if, on the contrary, θ̂m lays to the left of the blue vertical line the agent
chooses to cooperate. Under these four conditions, the agents, initially,
cooperate with each other. PDF, probability density function.

less robust to the infection of ALLD agents. Only if it is
combined with the Projection bias does it weaken the network.

A distinguishing characteristic of our model is that it is built
upon a network, and the agents can choose a different action for
different contacts. In their seminal work, Nowak and May (25)
use a regular lattice where each agent plays only one action in
each step against their contacts. This model is suitable to study
the evolution of cooperation, but we believe that, to investigate
cooperation at a cultural level, we have to add the possibility of
acting differently with different contacts. We used a static ran-
dom network, but this is just another parameter of the model
that can be modified. For example, a network whose degree dis-
tribution follows a power law, or a small-world network, could be
used (26, 27). It is also possible to add dynamics to the network,
allowing the interaction to change iteration after iteration. Addi-
tionally, the ALLD agents could be placed, not randomly, but
rather in high-centrality nodes or in given k-shell within the net-
work. This variation could be used to investigate the effect that
highly connected people’s behavior might have on the rest of the
community.

The long-term motivation for this study is to understand why
different societies may converge to different policies of coopera-
tion and defection. One particular case which we are interested
in, and which was the motivation for the work on the corruption
game (10), was how this might impact in different degrees of cor-
ruption. Recently, Gächter and Schulz (28) using an anonymous

die-rolling experiment (29) showed that there is a correlation
between individual traits and global corruption. The corruption
game (10) was measured in the United States and Argentina,
where there are very different indices of corruption and results
were not very different. This suggests that Projection is not the
most likely psychological bias to account for. This is consistent
with our findings that a wide range of behaviors is only observed
for experimentally observed values of Projection. Within this
range, variability in Paranoia may explain bifurcations between
societies that (with similar initial states) converge to defection
or cooperation, or similarly in our interest to a high or low
level of corruption. Another source of variability could be the
effective impact of the ALLD agents in a society. Some govern-
ments have more efficient institutions which control the acts of
the ALLD agents more effectively. Small changes in this control
could lead to a different effective fraction of ALLD agents which,
in a society that is in a bistable state, will lead to convergence to
cooperation or defection.

Our work builds on, and links, two different fields of behav-
ioral sciences. On the one hand, a tradition that has studied
agents with simple, yet effective, strategies, and which of these
strategies prevails in different contexts. Under this approach,
using unbiased agents, the appearance and prevalence of cor-
ruption have been investigated (17, 18, 20). The conundrum of
the emergence of cooperation has been addressed under this
framework, too (30, 31). On the other hand, our work builds
on a Bayesian approach to decision making that has sought to
inquire how priors and evidence are used to generate beliefs and
guide actions (32, 33). This work can be seen as a mixture of these
two traditions, where we can then ask how low-level psycholog-
ical constructs which affect the inferential process (micro) have
an impact on the large-scale organization of societies (macro).
To build this bridge between these traditions, we use network
theory, and the process that emerged under this framework was
very similar to an already-known network process: bootstrap per-
colation. We did not impose this process, but it was the result
of the cognitive model of the agents. Under this framework,
we find that small variations on cognitive biases could have
a significant impact on the average behavior of all of society.
According to our model, society-level phenomena, including the
broken window theory (34) and the broad range in the degree

A B

C

Fig. 6. (A) Classification of the network according to its stability for 16
different parameters. (B and C) Sa and Sgc as a function of the fraction
of ALLD agents. The dashed line in B shows the expected Sa due only to
the presence of the ALLD agents and assuming that they do not interact
with each other. It can be seen that the high-cooperation region does not
have a sharp transition, while the bistable ones do, and the high-defection
one has a large Sa and Sgc for any nonzero values of the fraction of ALLD
agents.
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of corruption among countries, is the consequence of cogni-
tive dissonance reduction mechanisms such as Projection and
Paranoia.
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